
#070119-004 1

  
Abstract— Estimations of seafloor clutter (also called mine-like 

echoes) and roughness (bottom relief) are needed during mine 
warfare operations to determine seafloor type for a geographic 
region of interest. Analysts at the Naval Oceanographic Office 
estimate bottom clutter and roughness from sidescan sonar 
imagery (SSI).  However, detecting clutter and determining 
roughness manually is often time consuming and can produce 
inconsistent results.  The Naval Research Laboratory has 
developed an algorithm to automatically derive seafloor 
roughness from SSI.  In repeated trials, results of the automated 
roughness algorithm correlated well (as high as 87%) with 
manual roughness estimations. 
 

Index Terms—Acoustic signal detection, Computer-aided 
analysis, and Sonar signal processing. 
 

I. INTRODUCTION 
ODERN remote sensing devices are capable of collecting 
tremendous amounts of high-resolution digital imagery 

in remote locations.  This imagery must be evaluated by an 
analyst to obtain useful information (e.g., detect and identify 
specific features of interest).   If the imagery is time-critical, 
analysis must be performed as quickly as possible.  However, 
the sheer volume of data available to analysts often precludes 
timely analysis [1], [2].  
 The design and development of computer-aided detection 
algorithms has advanced significantly in the past few decades 
in many fields, such as medicine.  In 1967, the difficulty of 
viewing and analyzing large amounts of data in screening 
mammograms was recognized, and computer-aided image 
analysis algorithms were suggested [3].  There were also early 
attempts to identify lesions such as malignant tumors using 
detection algorithms [4].  It was suggested that such 
algorithms should be incorporated into all new medical digital 
imaging systems [5]. 
 Another field that has benefited from automated detection 
algorithms is Mine Warfare (MIW).  Estimations of bottom 
clutter (also called mine-like echoes) and roughness (bottom 
relief) are two of the components needed during MIW 
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operations to determine the seafloor type for a geographic 
area.  Analysts at the Naval Oceanographic Office 
(NAVOCEANO) obtain bottom clutter and roughness 
estimations for MIW directly from sidescan sonar imagery 
(SSI).  Detecting clutter and determining roughness manually 
can be time consuming and often produce inconsistent results, 
due to the subjective nature of the analysis.  Automated 
algorithms can potentially derive clutter and roughness from 
SSI in a more consistent and timely manner. 
 Features such as pockmarks, sand ripples, and rocks on the 
seafloor are visible in SSI as bright spots (“brights”) with 
adjacent shadows.  The Naval Research Laboratory (NRL) 
developed a real-time clutter detection algorithm (transitioned 
to NAVOCEANO in 2001) that quickly and reliably identifies 
clutter in SSI and clusters the results into polygons.  An 
object’s height (estimated from the length of its shadow) is 
one measurement used to determine whether the object is 
mine-like. The authors theorized that height also could be used 
to automatically estimate seafloor roughness. 
 NRL recently developed a new automated roughness 
estimation algorithm, based on the clutter detection algorithm, 
to automatically derive seafloor roughness from SSI.  The 
roughness algorithm was transitioned to NAVOCEANO in 
2006.  This paper provides an overview of the clutter detection 
algorithm, describes the roughness algorithm, and presents test 
results and comparisons with manual roughness estimations. 
 

II. CLUTTER DETECTION ALGORITHM 

A. Overview 
The real-time clutter detection algorithm developed by the 

authors ingests one scan line of SSI at a time.  Across-track 
bright and shadow positions, lengths, and intensity 
information are immediately gathered from the scan line and 
stored in two one-dimensional geospatial bitmaps (GBs): one 
each for shadows and brights.  A circular lookup table is 
created to “window” the imagery several scan lines at a time.  
This lookup table is the same width as the GBs and is 
populated with the positions and run-lengths of shadows and 
brights stored in the GBs.  The window is used to make the 
final detection decision. 

 

B. Geospatial Bitmaps (GBs) 
Due to real-time processing considerations, the authors’ 

algorithm relies on a patented GB technique [6].  Simple 
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bitmaps, with a depth of one bit per pixel, are binary structures 
in which bits are turned on (set = 1) or off (cleared = 0).  The 
index of each bit is unique and denotes its position relative to 
other bits in the bitmap.  The author extended this concept to 
construct GBs in which every bit represents an object at some 
unique geospatial location.  A set bit indicates that some 
object of interest exists (in this case a bright or shadow pixel) 
at that location, accurate to within the resolution of the bitmap.  
A cleared bit indicates the absence of any object at that 
location.  Although a GB can be defined for an entire finite 
space, memory is only allocated (dynamically) when groups of 
spatially close bits are set, resulting in a compact data 
structure that supports very fast Boolean and morphological 
operations. 

C. Pixel Intensity Thresholds 
Across-track bright and shadow positions and lengths are 

stored in two GBs: one each for shadows and brights.  
Shadows and brights in a scan line are located by first 
adaptively obtaining a lower intensity threshold, imin, such that 
all samples of intensity less than imin are considered shadows.  
An upper intensity threshold, imax, is set such that all samples 
of intensity above imax are considered brights. 

An appropriate gamma shift converts image intensities to fit 
a normal distribution, such that imin and imax are set to the 
quartiles of the shifted (normal) distribution.  After imin and 
imax have been determined for scan lines with maximum 
intensity value > 128, the port and starboard halves of the scan 
lines are processed separately.  Each half of the scan line can 
be represented by a vector, X, of length N.  The following 
method is used to process shadows and brights for the 
starboard side; the port side is processed similarly. 

Two GBs of size 1xN are created, one for shadows and one 
for brights.  A different gamma adjustment, γ, based on an 
error approximation of the side-scan sonar parameters, is 
computed for position x within X, as shown in (1). 
 
 γ = e –β x / N (1) 
 
β is based on the sonar parameters, such as time-varying gain.  
As β approaches infinity, the gamma correction approaches 0 
over a greater range of X (Fig. 1), and therefore has less affect 
on intensity thresholds. 

The bright and shadow thresholds Imin(x) and Imax(x) are 
defined in (2) and (3).  All pixels with intensity values above 
Imax(x) are considered brights, while all with intensities below 
Imin(x) are considered shadows, and the corresponding bits in 
the bright and shadow GBs are set, as shown in Fig. 2. 

 
 Imin(x) = imin(1- γ) (2) 
 Imax(x) = imax(1+ γ) (3) 
 
 

 
Fig. 1.  Gamma as a function of β. 

 
 

 
Fig. 2. GBs facilitate computer-aided detection of objects in SSI.  Each row of 
bits in both GBs corresponds to a single scan line in the image.  All pixels in 
the image with intensity greater than upper threshold Imax are considered 
“brights” and the appropriate bits in the bright GB are set.  Likewise, all pixels 
in the image with intensity less than lower threshold Imin are considered 
“shadows” and the appropriate bits in the shadow GB are set. 

 
Fig. 3 illustrates how the intensity thresholds vary over x 

for a given γ.  For example, the closer a pixel is to the center 
of the scan, known as nadir (x = 0), the greater its intensity 
must be to be detected as a bright [7], and the lower its 
intensity must be to be detected as a shadow.  It is interesting 
to note that the two threshold curves do not diverge from their 
respective asymptotes (imin and imax) at the same rate as they 
approach nadir.  This is by design, because shadows are more 
detectable than brights in SSI [8] – [11].  In other words, a 
single shadow threshold value (imin) suffices for more values 
of x than a single bright threshold value (imax). 
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Fig. 3.  Intensity thresholds for brights and shadows. 

 

D. Circular Lookup Table 
 Finally, the bright and shadow geospatial bitmaps are 
examined from the edges of the scan lines toward the center 
(nadir) to detect runs of shadows followed by runs of brights.  
A circular lookup table is created to “window” several scan 
lines at a time.  This lookup table is populated with positions 
and run-lengths of shadows and brights.  The window 
information is used to determine if a series of scan-line 
detections comprise an object. Shadow length is one 
component in determining the object’s height, which is used to 
help determine whether the object is mine-like. The authors 
theorized that height also could be used to automatically 
estimate seafloor roughness (or bottom relief). 
 

III. AUTOMATED ROUGHNESS ALGORITHM 
NRL developed an automated algorithm to estimate seafloor 

roughness from SSI, which is based on the clutter detection 
algorithm described above.  In the new roughness algorithm, 
the authors used sensor altitude above the seafloor, distance of 
the shadow from nadir, length of the shadow (determined by 
the clutter detection algorithm) and sonar resolution to 
estimate roughness.  The resulting roughness maps use shaded 
or outlined polygons to delineate smooth and rough areas.  

The algorithm was first tested on two geographic regions 
(labeled I and II) and compared with manual roughness 
estimated by expert analysts at NAVOCEANO.  The 
algorithm detected bottom object locations for each region, 
clustered them into polygons, and categorized the regions as 
relatively smooth or rough. 

 

IV. TEST RESULTS 
Fig.s 4 and 5 show the manual polygons (white outlines) 

overlaid on results of the roughness algorithm (light-gray-
filled polygons) for Regions I and II, respectively.  The 
percentage of agreement between manual and automated 
polygons is approximately 60% for Region I and 84% for 

Region II.  This is equivalent to %correct for the automated 
method, assuming the manual method is ground-truth).  
Importantly, both the manual and automated methods clearly 
indicate a smooth “lane” running through the center of the SSI 
in Region I.  During mine warfare operations, bottom 
roughness is one of the components considered when choosing 
which navigation lanes to clear of mines, since it is easier to 
clear a smooth seafloor than a rough one. 

Another test, over a third region in 2006, resulted in 87% 
agreement, shown in Fig. 6.  Table 1 shows how the authors 
calculated percent agreement. 

 
 

 
Fig. 4.  Roughness estimations for Region I: determined manually (white 
outlines) and with the NRL Automated Roughness Algorithm (light gray filled 
regions).  The percentage of agreement between manual and automated 
roughness estimations is 60%. 
 
 

 
Fig. 5.  Roughness estimations for Region II: manual (white outlines) and with 
the NRL Automated Roughness Algorithm (light gray filled regions).  The 
percentage of agreement between manual and automated roughness 
estimations is 84%. 
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Fig. 6.  Roughness estimations for Region III:  a) manual estimation only; 
b) manual and automated combined; c) automated estimation only.  Light gray 
areas were judged to be smooth, medium and dark gray areas rough.  Table I 
provides additional explanation. 
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TABLE I 
CALCULATING %CORRECT FOR RESULTS  
OF AUTOMATED ROUGHNESS ALGORITHM 

 #pixels %image Description 

¾ 3822 79.3% Correct (smooth) 

¾ 349 7.2% Correct (rough) 

  86.5% Total correct 

¾ 649 13.5% Incorrect: false alarms 
(falsely categorized smooth areas as rough) 

 0 0.0% Incorrect: missed detections 
(falsely categorized rough areas as smooth) 

  13.5% Total incorrect (false alarms only) 


